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Abstract—Molecular docking is an approach to predict receptor-
ligand binding modes. The use of high-throughput screening in the 
pharmaceutical and biotechnology industries has led to the 
investigation of large number of compounds for their biological 
activity. In-vitro screening of number of compounds is an expensive 
and time-consuming process. Docking is a clear computational 
strategy of choice to augment and accelerate structure-based drug 
discovery. Xanthine oxidase (XO) is the metabolizing enzyme that is 
physiologically involved in the conversion of xanthine to uric acid; 
which in high concentration is responsible for inflammatory 
conditions. In-silico screening of the phytoconstituents with the 
enzyme XO will identify the most suitable drug candidate which can 
be further evaluated using in-vitro experimentation. This focused 
approach will reduce cost and time. Here, we docked a library of 
phytoconstituents using ‘Maestro Schrodinger’ software with XO; 
forming the basis of rational drug discovery. Phloretin showed 
potential interaction with the enzyme in this study. 

1. INTRODUCTION 

The xanthine oxidase (XO) family comprises of molybdenum-
dependent enzymes that usually form homodimers or dimers 
of heterodimers/trimers organized in three domains. N-
terminal domain has two [2Fe-2S] clusters, one FAD molecule 
at intermediate domain, and a Molybdopterin (Mo-Co) 
cofactor in the C-terminal domain. The Mo-Co has two Mb 
atoms. Mb atoms are contained as molybdopterin cofactor and 
the active sites of the enzyme[1,16]. Xanthine oxidase is a 
form of Xanthine oxidoreductase (XOR) which is a highly 
conserved member of the molybdoenzyme family, which also 
includes aldehyde oxidase (AO) and sulphite oxidase (SO)[3]. 
In 1902, Schardinger identified xanthine oxidase in milk. In 
1921, Frederick Gowland Hopkins discovered, Xanthine 
oxidase, an enzyme that is widely distributed in tissue and 
milk [4,5].  

Xanthine oxidase (XO) is a metabolizing enzyme that 
plays an important role in the catabolism of purines in some 
species including human. In the last two reactions of purine 
catabolism, it converts hypoxanthine to xanthine and then 
xanthine to uric acid. It also generates reactive oxygen species 
(ROS) during this conversion. The oxidation of xanthine takes 

place at the molybdenum center, and the electrons thus 
introduced are rapidly transferred to FAD via the Fe–SI and 
Fe–SII centers [2]. The reoxidation of the reduced enzyme by 
the oxidant substrate, NAD+ or molecular oxygen, occurs 
through FAD. The reaction is as follows [18]: 

Hypoxanthine + O2 + H2O → Xanthine + H2O2 

Xanthine + 2O2 + H2O → Uric Acid + 2O2
- + 2H+ 

Xanthine + O2 + H2O → Uric Acid + H2O2 

2O2
- + 2H+ → H2O2 + O2 

High concentration of uric acid and ROS damages tissue, 
resulting in the release of lysosomal enzymes that induce an 
inflammatory response [8]. Inflammation is the cause of the 
various disorders such as complications in diabetes, 
neurodegenerative diseases which include Parkinson disease, 
epilepsy, Alzheimer’s disease. Therefore, the inhibition of XO 
with potent inhibitors could be one of the strategies to prevent 
the inflammation and consequent disorders.[9,10,11,17,22]. 

There are two classes of XO inhibitors, one is purine 
analogues such as allopurinol, oxypurinol etc., and other is 
non-purine analogues such as quercetin, febuxostat etc.  

In-vitro and in-vivo drug discovery takes approximately 
12-14 years and costs up to 76 billion INR. Therefore, in-
silico drug discovery is most suitable to screen and predict the 
active molecules which could be further evaluated for their 
proposed activity in order to save time as well as money [6, 
17].  

Molecular Docking is an approach to predict the most 
suitable and stable orientation of ligand- receptor complex. It 
is a structure based virtual screening approach to predict most 
suitable and stable receptor- ligand binding modes. The ideal 
structure is to identifying a better key for a given lock. The 
process of docking a ligand to a binding site mimics the 
natural course of interaction of the ligand and its receptor via 
lowest energy pathway. It computationally predicts the 
structures of protein-ligand complexes from their 
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2.4 Receptor grid generation 

Receptor was defined and the co-crystallized ligand was 
differentiated from the active site of receptor chain B for 
3BDJ (XO with oxypurinol) and chain L for 3NVY (XO with 
quercetin). The atoms were scaled by van der Waals radii of 
1.0 Å with the partial atomic charge less than 0.25 default. 
The active site for both the protein was defined as an 
enclosing box at the centroid of the workspace ligand as 
selected in the receptor folder. The ligands similar in size to 
the workspace ligand were allowed to dock into the active site. 
No constraints either positional, H bonding or hydrophobic 
were defined [12]. 

2.5 Ligand docking: 

Ligand docking was performed using OPLS-2005 force field. 
The receptor grid defined in the receptor grid generation folder 
was selected for the docking of ligands prepared using 
Ligprep. Flexible docking was performed using the Extra 
Precision (XP) feature of Glide module. The van der Waals 
radii was scaled using a default scaling factor of 0.80 and 
default partial cutoff charge of 0.15 to decrease the penalties 
for close contacts. The core pattern comparison and similarity 
mode were not used since our aim was to study the binding of 
ligands to the active site. The constraints to defined ligand–
receptor interactions were not set. The structure output form 
was set to pose viewer file so as to view the output of the 
resulting docking studies from pose-viewer [12]. 

2.6 Viewing docking results: 

It was done using pose-viewer. The H bonds and bad and ugly 
van der Waals contacts to the receptor were visualized using 
default settings to analyze the binding modes of the ligands to 
receptor. The constraints to define ligand–receptor interactions 
were not set. The final ligand binding poses were ranked 
according to a computed model score that encompasses the 
grid score, proprietary GLIDE score, and the internal energy 
strain. The structure output format was set to pose-viewer file 
so as to view the output of the resulting docking studies from 
pose-viewer. The score function of Glide, or Glide score, a 
modified and expanded version of ChemScore, was used for 
binding affinity prediction and ligand ranking. The docking 
can be on the level of either standard (SP) or XP. The 
improvement of XP over SP includes the addition of large 
desolvation penalties to both ligand and protein, assignment of 
specific structural motifs that contribute significantly to 
binding affinity, and expanded sampling algorithms required 
by scoring function improvement (Glide 2014). Therefore, XP 
mode was used for molecular docking of XO (PDB ID- 3BDJ 
& 3NVY) with library of phytoconstitutents.  

 

 

 

3. RESULTS AND DISCUSSION: 

3.1 Molecular docking  

The docking studies were carried out to explore the interaction 
mechanism between inhibitors and the receptor. The score 
function of Glide, gives highest binding affinity prediction as 
well as molecule ranking. The molecules along with their 
Glide docking score have been listed in Table 3. 

Table 3. Docking score of XO with phytoconstitutents 

Title 
Docking 

Score 
Title 

Docking 
Score 

3NVY  3BDJ  
Quercetin -11.2 Phloretin -9.692 
Luteolin -9.895 Quercetin -9.578 

Ellagic Acid -8.787 Luteolin -8.884 
Naringenin -8.497 Naringenin -8.011 
Phloretin -8.068 Apigenin -7.891 
Apigenin -7.88 Gentisic Acid -7.558 

Ethyl Ferulate -7.165 Acetyl Xanthine -5.65 
Diadzein -7.153 Allopurinol -5.525 

Acetyl Xanthine -6.203 Ethyl Ferulate -5.442 
Psoralen -6.1 Thymol -4.941 
Thymol -5.97 Oxypurinol -4.155 

Oxypurinol -5.702 Thymoquin-one -4.144 
Allopurinol -5.687 Diadzein -3.972 
Histamine -5.539 Psoralen -3.513 

Gentisic Acid -5.318 Apocynin -3.286 
Apocynin -5.155   

Thymoquinone -4.743   
Diosgenin -3.936   
Arecolin -3.62   

Ursolic acid 
 

-1.806 
  

 

In this study, we docked a library of phytoconstitutents 
with XO. Since there are two classes of inhibitors, we selected 
two XO-inhibitor crystal complexes, one was XO with 
inhibitor oxypurinol which comes under the class purine 
analogue and other was XO with inhibitor quercetin which is 
non-purine analogue.  

In 3BDJ docking, phloretin (-9.692) showed maximum 
dock score which is much higher than the standard inhibitors 
(allopurinol: -5.525, oxypurinol: -4.155).  

Many molecules have higher dock score than the standard 
inhibitors i.e., allopurinol with a dock score of  -5.687 and 
oxypurinol with a score of -5.702 for 3NVY. In 3NVY, 
quercetin showed maximum interaction with the enzyme XO. 
Phloretin showed potential interaction with the enzyme. We 
have thus identified phloretin as a molecule for further 
experimentation on XO in-vitro. 
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to study the enzyme interaction in- vitro to comment on its 
stimulatory or inhibitory interaction with the enzyme.  
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